2002 FP2 Adapted

1. Find the set of values for which

$$
\begin{equation*}
|x-1|>6 x-1 \tag{5}
\end{equation*}
$$

2. (a) Find the general solution of the differential equation $t \frac{\mathrm{~d} v}{\mathrm{~d} t}-v=t, t>0$ and hence show that the solution can be written in the form $v=t(\ln t+c)$, where c is an arbitrary cnst.
(b) This differential equation is used to model the motion of a particle which has speed $v \mathrm{~m} \mathrm{~s}^{-1}$ at time $t \mathrm{~s}$. When $t=2$ the speed of the particle is $3 \mathrm{~m} \mathrm{~s}^{-1}$. Find, to 3 sf , the speed of the particle when $t=4$.
3. (a) Show that $y=\frac{1}{2} x^{2} \mathrm{e}^{x}$ is a solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=\mathrm{e}^{x} \tag{4}
\end{equation*}
$$

(b) Solve the differential equation $\quad \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=\mathrm{e}^{x}$.
given that at $x=0, y=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=2$.
4. The curve C has polar equation $r=3 a \cos \theta,-\frac{\pi}{2} \leq \frac{\pi}{2}$.

The curve D has polar equation $r=a(1+\cos \theta),-\pi \leq \theta<\pi$. Given that a is a positive constant,
(a) sketch, on the same diagram, the graphs of C and D, indicating where each curve cuts the initial line.

The graphs of C intersect at the pole O and at the points P and Q.
(b) Find the polar coordinates of P and Q.
(c) Use integration to find the exact area enclosed by the curve D and the lines $\theta=0$ and $\theta=\frac{\pi}{3}$

The region R contains all points which lie outside D and inside C.

Given that the value of the smaller area enclosed by the curve C and the line $\theta=\frac{\pi}{3}$ is

$$
\frac{3 a^{2}}{16}(2 \pi-3 \sqrt{ } 3)
$$

(d) show that the area of R is πa^{2}.
5. Using algebra, find the set of values of x for which $2 x-5>\frac{3}{x}$.
6. (a) Find the general solution of the differential equation

$$
\begin{equation*}
\cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}+(\sin x) y=\cos ^{3} x . \tag{6}
\end{equation*}
$$

(b) Show that, for $0 \leq x \leq 2 \pi$, there are two points on the x-axis through which all the solution curves for this differential equation pass.
(c) Sketch the graph, for $0 \leq x \leq 2 \pi$, of the particular solution for which $y=0$ at $x=0$.
7. (a) Find the general solution of the differential equation

$$
\begin{equation*}
2 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+7 \frac{\mathrm{~d} y}{\mathrm{~d} t}+3 y=3 t^{2}+11 t . \tag{8}
\end{equation*}
$$

(b) Find the particular solution of this differential equation for which $y=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}=1$ when $t=0$.
(c) For this particular solution, calculate the value of y when $t=1$.
8.

Figure 1

The curve C shown in Fig. 1 has polar equation

$$
r=a(3+\sqrt{5} \cos \theta),-\pi \leq \theta<\pi .
$$

(a) Find the polar coordinates of the points P and Q where the tangents to C are parallel to the initial line. (6)

The curve C represents the perimeter of the surface of a swimming pool. The direct distance from P to Q is 20 m.
(b) Calculate the value of a.
(c) Find the area of the surface of the pool. (6)
9. (a) The point P represents a complex number z in an Argand diagram. Given that

$$
|z-2 \mathrm{i}|=2|z+\mathrm{i}|,
$$

(i) find a cartesian equation for the locus of P, simplifying your answer.
(ii) sketch the locus of P.
(b) A transformation T from the z-plane to the w-plane is a translation $-7+11$ i followed by an enlargement with centre the origin and scale factor 3.

Write down the transformation T in the form

$$
\begin{equation*}
w=a z+b, \quad a, b \in \mathbb{C} . \tag{2}
\end{equation*}
$$

10. $y \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}+y=0$.
(a) Find an expression for $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}$.

Given that $y=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=1$ at $x=0$,
(b) find the series solution for y, in ascending powers of x, up to an including the term in x^{3}.
(c) Comment on whether it would be sensible to use your series solution to give estimates for y at $x=0.2$ and at $x=50$.
(2)

